
Topic 5H - Alternative Forms of the Equilibrium Constant

Figure 5-2

At a constant temperature of 25°C, a graph of N_2O_4 partial pressure at equilibrium versus NO_2 partial pressure has the form of a parabola.

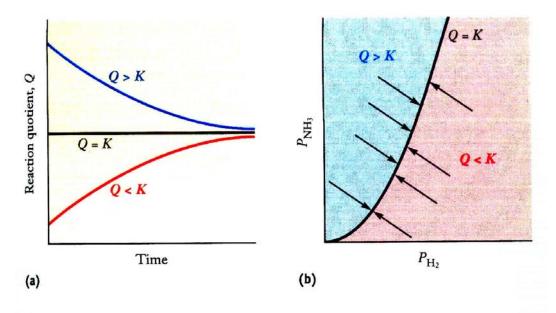


FIGURE 9.5 If nitrogen and hydrogen are mixed in 1:3 proportions together with some ammonia, they react according to the chemical equation

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$$

(a) If the initial reaction quotient Q_0 is less than K, it increases with time; if it is greater than K, it decreases. (b) The pathways from (a) are shown here in a graph of the partial pressure of ammonia against that of hydrogen (under conditions where there are three moles of H_2 for each mole of N_2). As the reaction goes toward equilibrium, the partial pressures approach a parabolic curve representing partial pressures that can coexist at chemical equilibrium.

TABLE 6.1 Results of Three Experiments for the Reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ AT 500°C

Experiment	Initial Concentrations	Equilibrium Concentrations	$K = \frac{[NH_3]^2}{[N_2][H_2]^3}$
I	$[N_2]_0 = 1.000 M$ $[H_2]_0 = 1.000 M$ $[NH_3]_0 = 0$	$[N_2] = 0.921 M$ $[H_2] = 0.763 M$ $[NH_3] = 0.157 M$	$Q_i = 0$ (< K) $K_c = 6.02 \times 10^{-2} \text{ L}^2/\text{mol}^2$
II	$[N_2]_0 = 0$ $[H_2]_0 = 0$ $[NH_3]_0 = 1.000 M$	$[N_2] = 0.399 M$ $[H_2] = 1.197 M$ $[NH_3] = 0.203 M$	$C_c = \infty$ (> K) $C_c = 6.02 \times 10^{-2} \text{ L}^2/\text{mol}^2$
III	$[N_2]_0 = 2.00 M$ $[H_2]_0 = 1.00 M$ $[NH_3]_0 = 3.00 M$	$[N_2] = 2.59 M$ $[H_2] = 2.77 M$ $[NH_3] = 1.82 M$	$Q_i = 4.5$ (> K) $K_e = 6.02 \times 10^{-2} L^2/\text{mol}^2$

$$K_c = \frac{K_p}{(RT)^{\Delta n}}$$
 (where $\Delta n = -2$)
 $K_p = \frac{K_c}{(RT)^2} = \frac{6.02 \times 10^{-2} \text{ L}^2 / \text{mol}^2}{(0.08205 \text{ L} \cdot \text{atm} / \text{mol} \cdot \text{K} \times 773.15 \text{ K})^2}$

$$= 1.50 \times 10^{-5} \text{ atm}^{-2}$$